Estudos genômicos de tolerância à seca em arroz

Authors

  • Ricardo Diógenes Dias Silveira Instituto Federal Goiano - Câmpus Urutaí

DOI:

https://doi.org/10.33837/msj.v1i1.55

Abstract

O arroz de terras altas é sensível à seca principalmente durante a fase reprodutiva, quando até mesmo o estresse moderado pode resultar na redução drástica de produtividade. Diante do estresse, uma série de genes é induzida nas plantas, desencadeando uma complexa rede de respostas que se estende desde a percepção e reconhecimento do sinal de estresse, passando pela ativação de genes de resposta adaptativa. Atualmente, vários estudos têm objetivado identificar e quantificar a expressão desses genes durante o momento do estresse. Técnicas avançadas de sequenciamento têm possibilitado identificar essas regiões expressas no genoma de arroz e associá-las a tolerância à deficiência hídrica. Essa revisão de literatura reunião diversos trabalhos de gênomica funcional e de transcriptoma de arroz que visam identificar genes relacionados à tolerância à seca. 

References

Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, et al. Cytokinin oxidase regulates rice grain production. Science 309:741-745, 2005.

Bennett J. Opportunities for increasing water productivity of CGIAR crops through plant breeding and molecular biology. In. Improving water productivity in agriculture. Comprehensive Assessment of Water Management in Agriculture Series. Jacob W. Kijne, Randolph Barker and David Molden (eds). Chapter 7:103-126, 2003.

Bleeker PM, Spyropoulou EA, Diergaarde PJ, et al. RNA-seq discovery, functional characterization, and comparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaites trichomes. Plant Mol. Biol., 77, 323–336, 2011.

Bloom JS, Avaliação da interação entre Methylobacterium spp. e citros. Tese (Doutorado em Genética e Melhoramento de Plantas) – Escola Superior de Agricultura “Luiz de Queiroz”. Universidade de São Paulo, 2010, 46p.

Blum A. Drought resistance, water-use efficiency, and yield potential: are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56: 1159-1168, 2005.

Capell T, Bassie L, Christou P. Modulation of the polyamine biosynthetic pathway in transgenic rice confers tolerance to drought stress. Proceedings of National Academy of Sciences, 101:9909-9914, 2004.

Chandra BR, Zhang J, Blum A, David HTH, Wu R, Nguyen HT. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Science, 166: 855-862, 2004.

CONAB. Companhia Nacional de Abastecimento. Acompanhamento da Safra Brasileira, 2014. Disponível em: http://www.conab.gov.br/OlalaCMS/uploads/arquivos/14_02_11_15_22_20_boletim_graos_fevereiro_2014.pdf. Acesso em Março de 2015.

Crusciol CAC, Arf O, Soratto RP, Machado JR. Influência de lâminas de água e adubaçãomineral na nutrição e produtividade de arroz de terras altas. R. Bras. Ci. Solo, 27: 647-654, 2003.

Cui M, Zhang W, Zhang Q, Xu Z, Zhu Z, Duan F, Wub R. Induced over-expression of the transcription factor OsDREB2A improves drought tolerance in rice. Plant Physiology and Biochemistry, 49: 1384–1391, 2011.

Devos KM, Gale MD. Comparative genetics in the grasses. Plant Molecular Biology, 35: 3–15, 1997.

Edmeanes GO, Banziger M, Schussler JR. In: Campos H. Improving abiotic stress tolerance in maize: a random or planned process. In: Proceeding of the Arnel R Hallauer International Symposium on Plant Breeding, p. 17-22, 2004.

Ferraz EC. Ecofisiologia do arroz In: Castro RC, Ferreira SO. Ecofisiologia da produção agrícola. Associação Brasileira para pesquisa da Potassa e do Fosfato, 185-202, 1987.

Fornasieri Filho D, Fornasieri JL. Manual da cultura do arroz. Funep, p. 221, 1991.

Fukai S, Cooper M. Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res., 40: 67–86, 1995.

Gale MD, Devos KM. Comparative genetics in the grasses. Proc. Natl. Acad. Sci., 95: 1971–1974, 1998.

Gao Y, Xu H, Shen Y, Wang J. Transcriptomic analysis of rice (Oryza sativa) endosperm using the RNA-Seq technique. Plant Mol. Biol., 81: 363–378, 2013.

Gerik TJ, Faver KL, Thaxton PM. et al. Late season water stress in cotton: I. Plant growth, water uses, and yield. Crop Science, Madison, 36: 914-921, 1996.

Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. Japonica), Science, 296: 92-100, 2002.

Gomes MMA. Trocas gasosas e quantificação do ácido abscísico em duas cultivares de arroz sequeiro submetidas à deficiência hídrica. Revista Brasileira de Fisiologia Vegetal, 9 (3): 117-183, 1997.

Hadiarto T, Tran LP. Progress studies of drought-responsive genes in rice. Plant Cell Reports, 30 (3) 297-310, 2011.

Hinton JCD, Hautefort I, Eriksson S, Thompson A, Rhen M. Benefits and pitfalls of using microarrays to monitor bacterial gene expression during infection. Current Opinion in Microbiology, 7: 277–282, 2004.

Hopkins WG. Introduction to plant physiology. 2nd Ed. John Wiley & Sons, Inc., New York, NY, 1999.

Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, et al. Natural variation at the DEP1 locus enhances grain yield in rice. Nat. Genet., 41: 494-497, 2009.

IRRI. International Rice Research Institute, 2014. Disponível em: http://ricestat.irri.org:8080/wrs2/entrypoint.htm. Acesso em Março de 2015.

Ito Y, Katsura K, Maruyama K, Taji T, Kobayashi M, Seki M, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol., 47: 141–153, 2006.

Jalaluddin M, Price M. Photosynthesis and stomatal conductance as affected by drought stress. International Rice Research Notes (IRRI), 19(3):52-53, 1994.

Kawahara Y, Oono Y, Kanamori H, Matsumoto T, Itoh T, Minami E. Simultaneous RNA-Seq Analysis of a Mixed Transcriptome of Rice and Blast Fungus Interaction. PLOS ONE, 7(11): e49423, 2012.

Kawasaki S, Borchert C, Deyholos M, Wang H, Brazille S, Kawai K, Galbraith D, Bohnert HJ. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell, 13: 889-905, 2001.

Khurana P, Vishnudasan D, Chhibbar AK. Genetic approaches towards overcoming water deficit in plants-special emphasis on LEAs. Physiol. Mol. Biol. Plants, 14: 277–298, 2008.

Lee I, Seo, YS, Coltrane D, Hwang S, OH T, Marcotte EM, Ronald PC. Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proceedings of the National Academy of Sciences USA, 108: 8548-18553, 2011.

Lata C, Prasad M. Role of DREBs in regulation of abiotic stress responses in plants. J. Exp. Bot., 62: 4731–4748, 2011.

Levitt J. Responses of plants to environmental stresses. Academic Press, 732, 1972.

Li QL, Gao XR, Yu XH, Wang XZ, Jiaan LJ. Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol. Lett., 25: 1431–1436, 2003.

Lilley JM, Ludlow MM, McCouch SR, O'Toole JC. Locating QTLs for osmotic adjustment and dehydration tolerance in rice. J. Exp. Bot., 47: 1427-1436, 1996.

Kyndt T, Denil S, Haegeman A, Trooskens G, De Meyer T, Van Criekinge W, Gheysen G, Transcriptome analysis of rice mature root tissue and root tips in early development by massive parallel sequencing. J Exp. Bot., 63: 2141–2157, 2012.

Maclean JL, Dave DC, Hardy B, Hettel GP. Rice almanac. CAB International, Wallingford Natl. Acad. Sci., 101: 12404–12410, 2002.

MAPA. Ministério da Agricultura e Pecuária, 2014. Disponível em: http://www.agricultura.gov.br/vegetal/culturas/arroz/. Acesso em Março de 2015.

Mizuno H, Kawahara Y, Sakai H, Kanamori H, Wakimoto H, Yamagata H, et al. Massive parallel sequencing of mRNA in identification of unannotated salinity stress-inducible transcripts in rice (Oryza sativa L.). BMC Genomics, 11: 683, 2010.

Moore G, Devos KM, Wang Z, Gale MD. Cereal genome evolution: Grasses, line up and form a circle. Curr. Biol., 5: 737-739, 1995.

Nguyen HT, Babu RC, Blu A. Breeding for drought tolerance in rice: physiology and molecular genetics considerations. Crop Sci., 37: 1426-1434, 1997.

Nijhawan A, Jain M, Tyagi AK, Khurana JP. Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice. Plant Physiol., 146(2): 333-350, 2008.

Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, et al. An expression atlas of rice mRNAs and small RNAs. Nat. Biotechnol., 25: 473-477, 2007.

Oono Y, Kawahara Y, Kanamori H, Mizuno H, Yamagata H, Yamamoto M, et al. mRNA-Seq reveals a comprehensive transcriptome profile of rice under phosphate stress. Rice, 4: 50–65, 2011.

Pareek TK, Keller J, Kesavapany S, Pant HC, Iadarola MJ, Brady RO, et al. Cyclin-dependent kinase 5 activity regulates pain signaling. Proc. Natl. Acad. Sci., 103: 791–796, 2006.

Paterson AH, Bowers JE, Peterson DG, Estill JC, Chapman BA. Structure and evolution of cereal genomes. Curr. Opin. Genet. Dev., 13: 644-650, 2003.

Pinheiro BS. Cultivo do Arroz de Terras Altas: Características da Cultura. Embrapa Arroz e Feijão, Sistemas de Produção, N. 01, 2003. Disponível em: http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozTerrasAltas/. Acesso em Março de 2015.

Pinto AC, Melo-Barbosa HP, Miyoshi A, Silva A, Azevedo V. Application of RNA-Seq to reveal the transcript profile in bacteria. Genet Mol Res., 10 (3): 1707-18, 2011.

Price AH, Young EM, Tomos AD (1997) Quantitative trait loci associated with stomatal conductance, leaf rolling and heading date mapped in upland rice (O. sativa). New Phytol, v. 137: 83–91.

Price AH, Cairns JE, Horton P, Jones HG, Griffiths H (2002) Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: progress and new opportunities to integrate stomatal and mesophyll responses. J Exp Bot, 53: 989–1004.

Quan RD, Hu SJ, Zhang ZL, Zhang HW, Huang RF. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance. Plant Biotechnology Journal, 8: 476-488, 2010.

Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA get-blot analyses. Plant Physiol., 133: 1755–1767, 2003.

Seshasayee AS, Bertone P, Fraser GM, Luscombe NM. Transcriptional regulatory networks in bacteria: from input to output response. Current Opinion in Microbiology, 9: 511-519, 2006.

Shomura A, Izawa T, Ebana K, Ebitani T, Kanegae H, Konishi S, Yano M. Deletion in a gene associated with grain size increased yields during rice domestication. Nat Genet 40: 1023-1028, 2008.

Song Xj, Huang W, Shi M, Zhu MZ, Lin HX. A QTL for rice grain width and weight encondes a previously unknown RING-type E3 ubiqutin ligase. Nat Genet., 39: 623-630, 2007.

Stone LF, Moreira JA. A. Irrigação do arroz de terras altas em função da porcentagem de cobertura do solo pela palhada, no sistema plantio direto, Circular Técnica 69, Embrapa – Cnpaf, Goiânia, p.4 , 2005.

Taiz L, Zeiger E. Plant physiology. The Benjamin/Cummings Publishings Company, p. 565, 1991.

Taiz L, Zeiger E. Fisiologia vegetal. Porto Alegre: Artmed, p.449-484, 2004.

Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, et al. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. The Plant Cell, 16: 2481-2498, 2004.

TyagI AK, Khurana JP, Khurana P, Raghuvanshi S, Gaur A, Kapur A, et al. Structural and functional analysis of rice genome. Journal of Genetics, 83: 79-99, 2004.

Umezawa T, Yoshida R, Maruyama K, Yamaguchi-Shinozaki K, Shinozaki K. SRK2C. A SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proceedings of the National Academy of Sciences, 101:17306-17311, 2004.

Van Vliet AHM. Next generation sequencing of microbial transcriptome: challenge and opportunities. FEMS Microbiology Letters, 302: 1-7, 2010.

Wang D, Pan Y, Zhao X, Zhu L, Fu B, Li Z. Genome-wide temporal-spatial gene expression profiling of drought responsiveness in rice. Genomics 12:149, doi: 10.1186/1471-2164-12-149, 2011.

Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews. Genetics, 10(1):57-63, 2009.

Wohlbach DJ, Quirino BF, Sussman MR. Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20: 1101–1117, 2008.

Wu X, Kishitani S, Ito Y, Toriyama K. Accumulation of raffinose in rice seedlings overexpressing OsWRKY11 in relation to desiccation tolerance. Plant Biotechnol., 26: 431–4, 2009.

Xu DQ, Huang J, Guo SQ, Yang X, Bao YM, Tang HJ, Zhang HS (2008) Overexpression of a TFIIIA-type zinc finger protein gene ZFP252 enhances drought and salt tolerance in rice (Oryza sativa L.). FEBS Lett., 582: 1037–1043, 2008.

Xiao B, Huang Y, Tang N, Xiong L. Over-expression of a LEA gene in rice improves drought resistance under the field conditions. Theor Appl Genet 115: 35–46, 2007.

Xu H, Gao Y, Wang J. Transcriptomic Analysis of Rice (Oryza sativa) Developing Embryos Using the RNA-Seq Technique. PLOs ONE, 7 (2): e30646, 2012.

Xu Y, McCouch SR, Zhang Q. How can we use genomics to improve cereals with rice as a reference genome? Plant Mol. Biol., 59: 7–26, 2005.

Yu J, HU S, Wang J, Wong GKS, Li S, et al. A draft sequence of the rice genome (Oryza sativa L. ssp indica). Science, 296: 79-92, 2002.

Zhai R, Feng Y, Wang H, Zhan X, Shen X, Wu W, et al. Transcriptome analysis of rice root heterosis by RNA-Seq. BMC Genomics, 14: 19, 2013.

Zhang G, Guo G, Hu X, ZhangY, Li Q, Li R, et al. Deep RNA sequencing at single base-pair resolution reveals high complexity of the rice transcriptome. Genome Research, 20: 646–654, 2012.

Zhang Q. Strategies for developing gree super rice. Proc. Natl. Acad. Sci., 104:1642-16409, 2007.

Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications, 379: 985–989, 2009.

Published

2018-03-18

How to Cite

Silveira, R. D. D. (2018). Estudos genômicos de tolerância à seca em arroz. Multi-Science Journal (ISSN 2359-6902), 1(1), 62-69. https://doi.org/10.33837/msj.v1i1.55

Issue

Section

Biological and Health Sciences

Most read articles by the same author(s)